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Abstract

We examine ballot stuffing, a form of electoral fraud involving the illegal addition of
extra ballots. While common in autocratic regimes, this practice is increasingly cited in
democracies as grounds for challenging election results. We propose a non-parametric
structural model that links unobservable polling station characteristics to instances of
ballot stuffing. By leveraging less fraudulent data—such as data from independent ob-
servers or exit polls—our model can identify ballot stuffing at the individual polling
station. Applying this model to the 2011 Russian Parliamentary election, we find sub-
stantial evidence of ballot stuffing, with fraud rates varying across and within regions.
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“It’s not the people who vote that count;
it’s the people who count the votes.”1

1 Introduction

Many modern nondemocratic leaders prefer maintaining a facade of democracy, with
elections being a key part of that image (Guriev and Treisman, 2022). To guarantee the
electoral outcome that projects their strength, they often engage in electoral manipulations
(Gehlbach et al., 2016). Recent examples of electoral fraud have been documented in Rus-
sia (Enikolopov et al., 2013; Kobak et al., 2018), Turkey (Aksoy, 2016), and Mozambique
(Leeffers and Vicente, 2019). Autocrats have devised countless ways to tamper with election
outcomes, from ballot stuffing—the illegal addition of extra ballots—to direct overwriting of
the final count. While statistical traces of interference often appear at the aggregate level,
accurately assessing electoral fraud at the local level—such as determining where it occurs
and to what extent—remains challenging. This requires understanding unobserved factors
like ideological preferences and voting costs at individual polling stations. However, local-
level analysis is essential to ensure electoral integrity and to guide the strategic allocation of
resources, such as independent observers or vote recounts, in future elections.

In this paper, we examine ballot stuffing, a specific form of electoral fraud often seen
in autocratic regimes and increasingly cited in recent democratic elections as grounds for
contesting results (BBC News, 2023; Bloomberg News, 2024). We propose a non-parametric
structural model of ballot stuffing and explain how it can be empirically estimated from
the data. Our findings show that with the availability of a less fraudulent sample (cleaner
data)—such as polling stations with independent observers or exit polls—we can accurately
detect ballot stuffing or establish its bounds at each polling station. This enables us to
measure the level of fraud in specific areas and the election overall. We estimate our model
using data from 2011 Russian parliamentary election, a case often scrutinized for its lack of
transparency and integrity (Golos, 2011; OSCE, 2011).

The existing research on electoral fraud explores the following main directions: the anal-
ysis of different statistical irregularities in the data, such as Benford’s law (Breunig and
Goerres, 2011; Mebane, 2008; Skovoroda and Lankina, 2017), unusual kurtosis of the dis-
tribution of electoral data (Klimek et al., 2012), and spikes in the distribution of votes
(Kobak et al., 2016a, 2018; Rozenas, 2017); the evaluation of fraud through both natural
experiments (Cantu, 2014; Casas et al., 2017) and randomized assignment of independent
observers (Asunka et al., 2019; Enikolopov et al., 2013); fitting a parametric model (Levin
et al., 2009; Mebane et al., 2022) and training a machine-learning algorithm (Cantu and

1A quote commonly attributed to Joseph Stalin, though its authenticity is debated.
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Saiegh, 2011). The existing papers concentrate on either identifying the fact of electoral ma-
nipulations through statistical irregularities or evaluating the average effect on the overall
result; however, most approaches cannot predict the effect on the result in a specific polling
station in the absence of a suitable natural experiment.

This paper focuses on elections with ballot stuffing being the main source of fraud. We
assume only the incumbent government has access to ballot stuffing, but not the opposition.
In this form of electoral fraud, polling station administrators insert additional ballots into
the ballot box and manipulate the official voter lists and turnout records, thereby artificially
lowering abstention rates to favor the incumbent party. As a result, both the turnout and
the number of votes for the incumbent increase. However, even though the voter shares
are affected as well, the number of votes for the opposition candidate stays unchanged. We
exploit these legitimate votes together with a simple structural model to non-parametrically
identify unobservable polling station random term by following Matzkin (2003)’s approach
for inference of a nonadditive unobservable variable. This random term is associated with
unobservable citizens’ characteristics that we cannot control for such as unobservable com-
ponent of ideological preferences, personal costs of voting, information, civic duty, etc. Next,
we evaluate how this unobservable polling station random term relates to ballot stuffing by
using a sample of less fraudulent data such as polling stations with independent observers
that reduce fraud (Enikolopov et al., 2013) or reliable exit polls. Because we are able to
identify the random term in each polling station, knowing its relationship with ballot stuff-
ing allows us to estimate it everywhere else. If the additional data contains polling stations
where there is certainty that no violations occurred or there is a reliable exit poll, then we are
able to evaluate ballot stuffing in every polling station. Otherwise, if we rely on independent
observers only reducing some amount of fraud, we are able to evaluate the lower bound or
what would have been the final election result if independent observers were present at every
polling station. It is worth noting that the need for an additional sample is met as long
as independent observers or reliable exit polls are present in at least one region, which are
increasingly common in today’s elections.2

Our model and the estimation procedure offered in this paper have a number of advan-
tages. First, to our knowledge, this paper is the first to propose a structural electoral model
that avoids parametric assumptions and assumptions on preference formation. Bypassing
restrictive assumptions makes the identification procedure more robust to different under-
lying specifications. Moreover it provides a flexible framework in which the model can be
extended to include a specific preference formation and develop further analysis of the de-
tailed preference components if needed. Second, the approach proposed in this paper does

2For instance, a comprehensive list of upcoming elections attended by OSCE independent observers can
be found at https://www.osce.org/odihr/elections.
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not require prior electoral data, and hence is applicable not only to regular elections, but also
to unique events such as referenda or for studying electoral boycotts. Third, we are able to
make inference about any polling station in the country rather than averages across regions.
This feature of our method is particularly useful for officials in charge of guaranteeing free
and fair elections, because our analysis can detect polling stations with questionable results
requiring additional attention with potential cancellation of the results and/or re-voting.

Our approach also contributes to the econometric literature on evaluation of the non-
classical measurement error in non-linear models (see Schennach (2016) and Schennach
(2022) for the most recent literature review). Our work falls in the stream of papers that
use a validation sample for the identification of the variables of interest. The validation
sample in our case is the cleaner, less fraudulent, sample such as exit poll or data from inde-
pendent observers. Most literature in this stream either focuses on the measurement error
in a regressor or an independent variable (Bound et al., 1989; Carroll et al., 2010; Carroll
and Wand, 1991; Hausman et al., 1991; Hu and Ridder, 2012; Pepe and Fleming, 1991); or
uses a parametric model (Hsiao, 1989; Katz and Katz, 2010); or studies the problem with
additive noise (Chen et al., 2005; Lee and Sepanski, 1995). Ballot stuffing affects the legit-
imate votes, which is a dependent variable, and it cannot be negative, implying a non-zero
mean and systematic biases in the observations. Additionally, we allow ballot stuffing to
correlate with the legitimate votes, hence, we face a mismeasured dependent variable that is
correlated with the measurement error. What sets us apart from the existing papers is that
we work with a non-parametric model with non-additive random term (unobserved citizens’
characteristics in our context). Even though our assumptions are weak yet we are able to
identify the distributions of interest because we exploit the legitimate number of votes for
the opposition.

To demonstrate our estimation strategy, we applied it to the 2011 Russian parliamentary
election, notorious for widespread ballot stuffing. We use the data from a randomized control
trial by Enikolopov et al. (2013), where independent observers were deployed to specific
polling stations in Moscow, resulting in reduction of fraud at those locations. By analyzing
these cleaner polling stations, we identified the relationship between unobservable polling
station random term and ballot stuffing. Then, studying the other polling stations, our
estimates suggest ballot stuffing affected approximately 13% of the overall votes. Our results
indicate considerable variation across regions, while also highlighting substantial differences
in fraud rates within regions.

This paper proceeds as follows: Section 2 introduces a structural model of ballot stuffing
and discusses its identification. In Section 3, we discuss the estimation procedure. Section 4
offers the empirical application.
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2 Model and identification

Ballot stuffing is directly connected to turnout. That is why our approach to modeling
it is closely related to the models of electoral competition and voter turnout, which often
hinge on individual characteristics such as the cost of voting and preferences (see Downs
(1957); Riker and Ordeshook (1968) and the literature deriving from them). However, due
to the anonymity of voting, these models struggle to empirically connect the individual
characteristics directly to voting behavior (King et al., 2004). As a result, researchers must
impose additional assumptions, such as a specific structure of utility and cost of voting
together with a specific parametric distribution that a voter would vote (Degan and Merlo,
2011; Kawai et al., 2021) or rely on unexpected and transitory shocks to voting costs, such
as rainfall (Fujiwara et al., 2016).3

Our approach takes a different direction. Instead of modeling individual voting behavior,
we focus on the aggregated electoral variables without making any assumptions on how these
variables have been formed. Although the aggregated variables we use can be connected to
the standard models of voting behavior (see an example of how a simplified version of calculus
of voting relates to our model in the Online Appendix C), our estimation results are robust
to the choice of a specific underlying model.

2.1 Electoral model

Two candidates, incumbent and opposition, are running for office. In every election, each
polling station reports data on the number of votes for each candidate and the voter turnout.
In each polling station, our observable electoral variables will be Y and Z: Y denotes the
proportion of votes for the incumbent calculated from the entire voter population, whereas
1 − Z denotes the proportion of votes for the opposition calculated from the entire voter
population as well. Hence, voter turnout is Y + 1− Z or the abstention rate is t = Z − Y .

In the absence of electoral fraud, the building block of our model is as follows:

incumbent votes: Y = m(X, ε)− t(X, ε)

opposition votes: 1− Z = 1−m(X, ε),

where t and m: A × E → R are continuous in (X, ε) and m is strictly increasing in ε,
A ⊂ RL is the support of observable regional characteristics X, L is the dimension of X,
E ⊂ R is the support of ε, X has a continuous density fX , and ε is an unobservable random
term related to a polling station, it has continuous distribution Fε and it is independent on

3Although these studies theoretically model the cost of voting for individual voters, their empirical
estimations, often based on aggregated data (e.g., county-level voting), still rely on variations in costs at the
aggregate level rather than the individual level.
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X. This random term explains the difference between two polling stations where all observ-
able characteristics (income, proportion of young voters, etc.) are the same yet the results
are different. Term ε captures unobservable characteristics of the polling station after ac-
counting for observable factors. These may include polling station-specific elements, such as
unobservable components of ideological preferences, voting costs, access to information, and
voters’ sense of civic duty. The fact that m is strictly increasing in ε means that the greater
ε the smaller the number of votes for the opposition. Hence, stronger ideological leaning
towards the incumbent, greater voting costs, lower sense of civic duty, lack of information
about the candidates would all result in a greater ε.

In any clean election, this model is identified subject to a normalization and can be non-
parametrically estimated. Additionally, because the used functions are fully non-parametric,
this model can cover most underlying preference formation processes. See Online Appendix
C for an example.

Next, we turn our attention to ballot stuffing. Formally, ballot stuffing is defined as the
illegal practice of one person submitting multiple ballots during a vote in which only one
ballot per person is permitted. In non-democratic elections, ballot stuffing happens when
the official staff that runs the voting in a polling station puts a number of prefilled ballots
into the ballot box either before the polls open or after they close. In addition, after the
polling station closes, the staff illegally corrects the official turnout to be consistent with
the number of votes in the ballot box. Hence, ballot stuffing operates through lowering the
abstention rate.

We assume only incumbent candidate has an opportunity to rig the election. In this case,
the observable variables are affected as follows: Variable Y denotes the number of votes for
the incumbent in a polling station. If q(X, ε) is a number of additional ballots due to fraud,
then instead of Y we observe variable Y f = m(X, ε) − t(X, ε) + q(X, ε). We assume that
q : A × E → R is continuous in (X, ε). Variable Z will not be affected, because 1 − Z

represents the number of votes for the opposition. To summarize, the observable variables in
our case are Y f , Z and controls X; the unobservable variables are Y and ε; and the model
is

Y f = m(X, ε)− t(X, ε) + q(X, ε)

Z = m(X, ε),
(1)

where all functions are unknown.
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2.2 Identification in nonadditive models

The only truthful observable electoral variable in this context is Z, which is generated by
the model Z = m(X, ε) in Eq. (1). Generally, given unobservable function m, the random
term ε is not uniquely identified. This relationship is a well-known nonadditive model that
can be identified subject to a normalization and estimated as discussed in Matzkin (2003).
In the empirical application, we use the midpoint of support of X for normalization of the
random term, which follows Specification I in the above reference.

Assumption 1 (Normalization). There exists known X = xn such that m(xn, ε) = ε.

With this normalization, Matzkin (2003) obtains expressions (3.1’) and (3.3’) in her
paper, which are

Fε(e) = FZ|X=xn(m(xn, e))

m(x, e) = F−1
Z|X=x

(
FZ|X=xn(e)

)
,

where FZ|X is a conditional distribution of Z given X.
This assumption requires choosing characteristics X = xn that will be “the standard” for

polling station uncertainty. We might choose one particular region or a vector of charac-
teristics without connection to any particular region as long as xn ̸= x in the regions with
X = x for which we conduct the estimation. The main property of the chosen value xn

should be the quality of the estimator of FZ|X=xn(·), hence, the vector should be well inside
of the support of X.

2.3 Identification of unobservable components

Without any additional structure and/or data, the identification of t(·) and q(·) is not
possible. Indeed, functions q̃(X, ε) = 0.5q(X, ε) and t̃(X, ε) = t(X, ε) − 0.5q(X, ε) produce
the exactly same observable variables Y f and Z. To proceed further we need additional
assumptions either on functions such as turnout or additional observations. This paper
explores evaluation of ballot stuffing through additional cleaner, less fraudulent, data.

Before proceeding further, note that the realization of the random term ε is identifiable
from observation Z = z as

ε = m−1(x, z) = F−1
Z|X=xn

(
FZ|X=x(z)

)
, (2)

for each polling station.
Suppose also we observe a cleaner sample in the region with X = x′. Such data could be

exit polls, surveys or reports from randomly assigned independent observers in one region.
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In the empirical application, we explore the latter. The independent observers might report
violations, however, their presence reduces the amount of ballot staffing (as in Enikolopov
et al. (2013)). This data allows us to obtain the truthful (or cleaner) distribution of the
abstention rate in this region: t = Z − Y . Given that we also can identify ε and its
distribution, hence we can identify the abstention rate t(x′, ε) but only conditional on X = x′.
So we need more assumptions to carry the inference onto other regions.

We assume that ballot stuffing is reduced by d(ε) + η in a polling station with random
term ε in the cleaner sample, so it does not depend on any observable variables and is only
a function of the random terms such that ε ⊥⊥ η and η is a mean-zero random noise.

Denote by Y obs the value of Y in the cleaner sample. Then we have the following rela-
tionships in the region with X = x′:

E(Z − Y f |X = x′, ε = e) = t(x′, e)− q(x′, e)

E(Z − Y obs|X = x′, ε = e) = t(x′, e)− q(x′, e) + d(e).

Given that ε is identified in each polling station, hence, d(e) is identified as well:

d(e) = E(Z − Y obs|X = x′, ε = e)− E(Z − Y f |X = x′, ε = e), (3)

which also represents the lower bound for ballot staffing in a polling station with ε = e.
Thus, we can also identify the lower bound of the abstention rate in each polling station

t̃(Y f , Z, e) = E(Z − Y obs|X = x, ε = e) = Z − Y f + d(e).

The function d(·) will have a different interpretation depending on the type of the cleaner
sample. If the additional data is perfectly clean, such as a reliable exit poll or observers
reporting no violations, and we believe that ballot stuffing q(X, ε) = q(ε) does not depend
on the observable variables and it depends only on the random term, then we are able to
evaluate the amount of fraud q(ε) = d(ε). On the other hand, if the additional sample is
the sample with randomized independent observers (with different reports of polling station
quality) and we assume that the effect from an observer present at a polling station obs(ε)

depends only on the random term, then we have obs(ε) = d(ε), which gives us the lower
bound. The counterfactual in this case can be interpreted as a scenario where independent
observers are present at all polling stations. Finally, note that this approach can also be
applied to biased exit polls.4

4For example, some opposition voters might be reluctant to say publicly that they vote for the opposi-
tion, so the exit poll will be biased towards the incumbent. If the exit poll still provides a more accurate
measurement of the incumbent’s votes than the official (fraudulent) result, and the difference is driven by a
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3 Estimation

The estimation procedure follows the identification strategy and involves two steps. We
assume the overall sample size N , the cleaner sample size Nc in region X = x′ and the rest
non-cleaner sample size Nf in region X = x′. The econometrician observes variables X, Y f

and Z for each polling station.
First, we estimate Eq. (2) and obtain the unobserved citizens’ characteristics ε̂ in every

polling station with observable variables X = x and Z = z. To do so, by following the iden-
tification strategy, we have ε̂(x, z) = F̂−1

Z|X=x

(
F̂Z|X=xn(z)

)
, where F̂Z|X=x(z) is an estimator

for the cumulative distribution function of Z given X = x. We follow Matzkin (2003) and
use a kernel estimator for F̂Z|X=x(·) that under the standard assumptions has the normal
asymptotics and converges with the rate

√
NhL, where h is the normalized bandwidth and

L is the dimension of X. Alternatively, one could use a series estimator as in Imbens and
Newey (2009).

Second, we estimate Eq. (3) and obtain the difference between the original sample and
the cleaner one, d(·), that we assume depends only on ε estimated in the first step. Denote
E(Z−Y f |X = x′, ε = e) = df (e) and E(Z−Y obs|X = x′, ε = e) = dobs(e) in the fixed region
with X = x′. Then d(e) = dobs(e)− df (e). Depending on the size of the cleaner sample, we
might use either parametric (OLS) or non-parametric (Nadaraya-Watson kernel regression
or series regression) approach for estimation of df (e) and dobs(e), delivering estimators with
rates of convergence

√
Nc and

√
Nf . However, we do not have the true value of ε but

its estimate. Thus, to be able to meaningfully use it in a parametric or non-parametric
regression, generally, ε̂ has to converge faster than the corresponding regression estimators.
Hence, we must have the cleaner sample’s size small in comparison with the actual sample
size and that of the overall region’s sample. If these and other standard assumptions hold,
then often d̂(ε̂) will have the normal asymptotics.5

Note that d̂(ε̂) represents the estimator for the lower bound of ballot stuffing if the cleaner,
less fraudulent, sample is not of perfect quality. If the additional data is non-fraudulent,
then d̂(ε̂) estimates the actual ballot stuffing based on the random term. The estimator of
the turnout (or its bound) follows directly from the estimator d̂(ε̂). Additionally, Online
Appendix B presents a simulation study that evaluates the proposed estimator.

random term, we can use these exit polls to estimate the lower bound of ballot stuffing.
5See Online Appendix A for a discussion on the asymptotic properties of this estimator when using kernel

estimators in both steps.
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4 Empirical Application

We provide an empirical application of our approach using the 2011 Russian parliamen-
tary election, which transparency and integrity are often questioned (Golos, 2011; OSCE,
2011). The election took place on December 4, 2011, with seven parties participating. The
official results reported a significant victory 49% for the incumbent party, United Russia
(UR), led by Vladimir Putin.

4.1 Dataset

Our data comes from three sources. The primary dataset is from the Central Electoral
Commission of the Russian Federation, including the election results, votes each party re-
ceived, reported turnout, and the number of registered voters for all polling stations.6

The second dataset helps us identify polling stations with minimal ballot stuffing. This
dataset is sourced from Enikolopov et al. (2013), who conducted a randomized control trial
during the same election. They assigned independent observers to 156 random polling sta-
tions in Moscow, showing that the presence of observers significantly reduced potential fraud
and the incumbent party’s voter share. Out of 156 randomly selected polling stations, ob-
servers reported no violations in 76 of them. These polling stations form our cleaner sample.

Lastly, since both datasets lack socio-economic characteristics of voters in the registered
districts, we use data from the 2010 Russian Census. This dataset includes demographic and
economic information (average salaries, occupations), as well as housing and ethnicity details.
We observe this information at the Selsoviet level, the smallest administrative division in
the country, with 21,659 Selsoviets recorded in the 2010 Census. We matched each polling
station to its corresponding Selsoviet. After excluding polling stations that could not be
precisely matched due to a lack of accurate address information,7 we retained a total of
71,064 polling stations. Among these, 138 had observers, and in 71 of those, no violations
were reported.

Our model assumes a two-party race. To employ our technique, we group all opposition
parties and invalid ballots8 into one variable. Specifically, Y f represents the officially re-
ported proportion for UR among registered voters at a given polling station, 1− Z denotes
the official proportion for the opposition parties (comprising the remaining six parties and
invalid ballots) among registered voters. For regional characteristics (X), we use principal
factor analysis to create three factors from 14 variables that capture the socio-economic

6The data was taken from the website of the Central Electoral Commission when it was publicly available.
7See the Online Appendix D for details on matching.
8Ballot spoiling is a way of protest voting that is common in Russia (Panyushkin, 2011; Smyth, 2022).
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characteristics of registered voters in each polling station.9

Panel A of Table 1 presents the official election results from our sample, which closely
align with the full sample results. The incumbent UR received 48.8% of the votes in our
sample, compared to 49.3% in the full sample. Among registered voters, the UR’s proportion
is 28.4%, while the proportion for other parties, including invalid ballots, totals 30.8%,
indicating an overall turnout rate of 59.2%.

The second column shows the results for Moscow, the largest region in Russia, with
7.1 million voters. The percentages are similar to those in column (1), except for a larger
share of votes for the non-UR group. Columns (3) and (4) present results for Tatarstan and
Dagestan, two of the ten most populous regions. In these regions, UR secured a significant
majority, with approximately 80% of the votes in Tatarstan and 92% in Dagestan, both of
which had turnout rates exceeding 80%.

Panel B shows the mean values of regional characteristics derived from the principal
factor analysis. These characteristics are normalized to the sample, resulting in a mean of
0 in column (1). Although they may not have direct interpretations, they can be viewed
as socio-economic indexes that capture regional differences. The next three columns display
the variations across regions.

4.2 Estimation and Results

We first estimate Eq. (2) and recover the individual polling station random terms, ε,
from the data on the opposition votes using the non-parametric kernel estimators for the
distributions involved. We use the midpoint of the support of X as the standard for the
normalization.10 We chose the midpoint based on the expected quality of the estimator of
FZ|X=xn(·) at such X = xn. Figure 1 Panel A plots the density of estimated polling station
random terms, ε, for the entire sample. The estimated values of ε range from 0.25 to 1, with
99% of the sample being above 0.5. The range of ε is determined by the normalization and
does not affect fraud estimation.11 These polling station random terms capture unobserved
citizens’ characteristics (e.g., unobservable component of ideological preferences, voting costs,

9This technique is similar to the methods used to create Socio-Economic Advantage/Disadvantage indexes
for localities by statistical agencies, with the data guiding the number of factors (see the Online Appendix
E for details on the principal factor analysis and variables).

10In the Online Appendix F.1, we use one of the regions for robustness check and show the results remain
robust regardless of the choice of normalization.

11For an example of relationship between the normalization and range of ε, consider the following scenario.
Suppose X is a one-dimensional variable and the true function m(X, ε) = X(1 + ε), where true ε ∈ [0, 1].
We pick a value X = xn for normalization, implying that normalized εn = xn(1 + ε), with its range being
[xn, 2xn]. Similarly, if instead of value xn, we use a different value X = x̄, then the range of the corresponding
ε̄ would be [x̄, 2x̄]. However, the normalization does not affect the second step of our estimation, because
conditional expectation with the condition ε = c is equivalent to the condition εn = xn(1+ c) or ε̄ = x̄(1+ c)
depending on the choice of the normalization and the corresponding range.
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civic duty), with higher values of ε indicating stronger pro-incumbent preferences or higher
voting costs.

The second step is to estimate Eq. (3), for what we use Moscow as a region with
our cleaner sample. To obtain the estimator of d(·), we compare the conditional means
E(Z − Y f |X = x′, ϵ = e) without observers and E(Z − Y obs|X = x′, ϵ = e) with observers,
where Z − Y represents the polling station abstention rate. This can be interpreted as the
first difference in abstention rates between cleaner polling stations and the rest of Moscow,
accounting for observables and ε. This is our estimate for “ballot stuffing”. We use the
Nadaraya-Watson kernel regression for estimation of these conditional means. For the cleaner
sample, we first restrict the data from independent observers only to those that reported no
violations. We are left with 71 data points that we use to evaluate the conditional mean,
E(Z − Y obs|X = x′, ϵ = e). The rest of the Moscow sample has 2,882 data points, which are
used to evaluate E(Z − Y f |X = x′, ϵ = e).12 This information provides us with an estimate
of ballot stuffing based on the random term ε. We plot the estimator of the function d(·)
in Figure 1 Panel B1 across ε. We use bootstrap to obtain the 95% confidence interval
constructed from 150 iterations.

The estimated function d(·) indicates that ballot stuffing is more prevalent in polling
stations with the highest ε. Because ε is a residual that represents the aggregation of all
unobserved effects, multiple underlying reasons might be contributing to this result. Higher
ε can be interpreted as reflecting areas with stronger support for the incumbent UR or
weaker support for the opposition. This implies that ballot stuffing is more frequent in pro-
incumbent regions, likely because it is easier to manipulate votes there. Higher voting costs,
lack of information and lower sense of civic duty all contribute to lower turnout. Hence,
when ε proxies some of these variables, it would likely lead to increased ballot stuffing, in
line with the intuition that areas with lower turnout rates offer more opportunities for fraud,
as the “cost of fraud” is lower (i.e., there is a greater margin to add extra ballots).

Given that ballot stuffing depends solely on the random term for each polling station,
and not on regional characteristics, we apply the obtained estimator to the remaining polling
stations in Russia in the final step. Table 1 Panel C shows that the turnout would have been
46.4% rather than the reported 59.2% if no fraud had occurred. This suggests that electoral
fraud across Russia accounts for approximately 12.8% of all registered votes, reducing the
proportion of the registered voters for the incumbent UR to 26.8%. In Moscow, the second
column shows a slightly higher fraud rate, with the UR’s estimated vote proportion at 24.8%.
Columns (3) and (4) report higher rates of ballot stuffing in Tatarstan and Dagestan, around

12Appendix F.3 presents summary statistics comparing the control group (rest of Moscow) with the
treatment group (polling stations with no reported violations), showing their similarity. We also construct
a pseudo-control group using propensity score matching, which yields results consistent with our baseline
estimates.
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18%. Figure 2 shows the mean fraud estimates across all 83 regions. Estimates suggest the
largest ballot stuffing in Karachay-Cherkess, Mordovia, Dagestan, Chechnya, and Tatarstan,
ranging from 18% to 21.6%. All of these regions are on the list of top 15 most fraudulent
Russian regions identified in Kobak et al. (2016a) using federal elections data from 2000
to 2012. The least ballot stuffing is observed in Kostroma, Yaroslavl, Oryol, Mari El, and
Novgorod Oblasts, ranging from 9.2% to 9.9%. While these estimates represent regional
averages, we can also derive the polling station-specific estimates. Figure 3 presents the box
plots of fraud estimates for the top 30 most populous regions.13 The figure also highlights
significant variations within the regions, showing that the estimated fraud is not uniformly
distributed across polling stations in each region.

A practical question arises: what if we do not know the cleaner sample precisely, but can
reasonably guess which polling stations are less likely to be affected by ballot stuffing? To
check this, we modify our cleaner sample to include all polling stations with independent ob-
servers. While presence of independent observers reduces potential fraud in polling stations,
it does not eliminate it entirely. For instance, in our data, serious violations were reported in
a quarter of the polling stations with independent observers (Enikolopov et al., 2013). In this
case, the estimator provides a lower bound for ballot stuffing. Hence, we are able to evaluate
how the presence of observers influences ballot stuffing based on the polling station’s random
term. This relationship is described by the function d(·) which is presented in Figure 1 Panel
B2. As expected, the estimator flattens, indicating that as cleaner sample (now including
reported fraud) becomes more similar to other polling stations, fraud detection becomes less
accurate.

Table 1 Panel D presents estimates showing that electoral fraud decreases by approxi-
mately 5% across regions, with a notably larger reduction in areas where support for UR
is higher. The second column indicates that the UR’s estimated voter share in Moscow is
around 35% under this specification. These findings align with previous studies, such as
(Enikolopov et al., 2013) and (Kobak et al., 2016b), which suggest that the estimated UR’s
vote share in Moscow should be between 30% and 36%.

Our results suggests that ballot stuffing contributed somewhere from 8.5 million to 14.6
million of votes for UR, which is consistent with 11 million votes detected by Kobak et al.
(2012). In terms of parliamentary representation, UR should have secured between 171 (38%)
and 203 (45%) parliamentary seats, rather than the 238 (53%) they officially obtained. This
indicates that, if relying only on legitimate votes, then UR would have lost its parliamentary
majority in the 2011 election.

13Refer to Online Appendix Figure F4 for the complete set of regions.
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5 Conclusion

We present a non-parametric structural model that leverages a cleaner sample of elec-
toral data—either from independent observers or exit polls—to identify ballot stuffing or
its bounds at each polling station. This methodology addresses the challenge of evaluating
fraud on a granular level, which previous studies could not achieve due to limitations in
methodology.

While focusing on elections where the prevalent manipulation is ballot stuffing is an obvi-
ous limitation of our approach, it allows us to exploit the legitimate votes for the opposition to
non-parametrically estimate unobservable polling station random terms associated with un-
observed citizens’ characteristics such as unobservable component of ideological preferences,
cost of voting, information, etc. The cleaner sample extends the procedure to evaluating
the relationship between the unobservable terms and ballot stuffing, allowing us to obtain
fraud or its bound in each polling station. Hence, while avoiding parametric or statistical
assumptions, we are able to conduct a detailed analysis at the polling station level rather
than relying solely on regional or aggregate data.

The empirical application of our model to the 2011 Russian parliamentary elections il-
lustrates its practical utility and shows that fraud is most prevalent in polling stations with
stronger ideological leaning and/or voting costs.

Overall, our approach provides an additional tool for election monitors, researchers, and
policymakers to better assess and address ballot stuffing. It offers a novel way to leverage
cleaner data to uncover hidden fraud and make informed decisions about the strategic allo-
cation of resources, such as independent observers or analysts reviewing election results, to
mitigate electoral fraud in future elections.
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Table 1: Descriptive Results and Empirical Estimation of the 2011 Russian Parliamentary Election

All Russia Moscow Tatarstan Dagestan
[1] [2] [3] [4]

Panel A: Official Results
Voter Share for UR 48.8% 47.3% 79.6% 91.6%
Proportion for UR among Reg Voters 28.3% 28.3% 62.9% 83.6%
Proportion for Non-UR among Reg Voters 30.8% 32.6% 16.8% 7.8%
Turnout Rate 58.2% 59.9% 79.1% 91.4%
Number of Polling Stations 71,064 2,952 2,631 1,661

Panel B: Region Characteristics
Number of Unique Selsoviet 13,964 127 867 644
Mean of First Factor 0 -0.73 0.27 -0.11
Mean of Second Factor 0 2.32 -0.39 -0.59
Mean of Third Factor 0 -0.22 0.11 0.74

Panel C: Estimation Results I: Cleaner Sample = Polling Stations Reporting No Violations
Estimated Turnout Rate 46.4% 47.5% 61.7% 72.6%
Estimated Fraud/Registered Voters 12.8% 13.4% 18.0% 18.7%
Estimated UR Vote /Registered voters 15.6% 14.9% 44.9% 64.8%
Estimated Voter Share for UR 33.6% 31.4% 72.7% 89.2%

Panel D: Estimation Results II: Cleaner Sample = Polling Stations with Independent Observers
Estimated Turnout Rate 51.6% 53.3% 70.6% 81.8%
Estimated Fraud/Registered Voters 7.5% 7.6% 9.12% 9.55%
Estimated UR Vote /Registered voters 20.8% 20.7% 53.8% 74.1%
Estimated Voter Share for UR 40.3% 38.8% 76.2% 90.4%

Notes: Table 1 Panel A presents the official results reported by the Central Electoral Commission of the Russian Federation. Panel B summarizes
regional characteristics, with principal factor numbers derived from the CENSUS data (see Appendix E for details). Panel C shows estimation results
using a cleaner sample of polling stations with independent observers who reported no violations. Panel D provides estimation results based on cleaner
polling stations with all observers. See Figure F4 for the fraud estimates across the remaining regions.
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Figure 1: Estimates of ε and d(·)

Panel A: Density of estimated ε
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Notes: Panel A presents the estimation results of Eq. (2) and shows the kernel density of estimated ε.
The median of the distribution is 0.66, and less than 1% of the density lies below 0.4. Panel B consists of
two sub-panels. In both sub-panels, the solid line represents the estimated function d(·) across ε, while the
dashed lines show the 95% bootstrapped confidence intervals. Panel B1 estimates d(·) using polling stations
with independent observers reporting no violations. Panel B2 estimates d(·) using all polling stations with
independent observers.
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Figure 2: Ballot Stuffing Estimates Across Regions

Estimated Ballot Stuffing in Region >17% 14.7% - 17% 12.5% - 14.7% 11% - 12.5% 9% - 11%

Notes: Figure 2 isplays the mean estimated ballot stuffing across 83 Russian regions, based on a cleaner sample of observers reporting no violations. Exact regional estimates can
be found in Appendix Figure F4.
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Figure 3: Estimated Ballot Stuffing Across the Top 30 Most Populous Regions
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Notes: Figure 3 shows the estimated ballot stuffing for the top 30 most populous regions in Russia, using the cleaner sample consisting of observers who reported no violations.
For estimates of the remaining regions, refer to Appendix Figure F4. The box represents the interquartile range (IQR), covering the middle 50% of the data. The red line inside
the box marks the median. The whiskers extend to the minimum and maximum values, excluding outliers, which are shown as individual points beyond the whiskers. The first
number at the bottom of the figure, "Off. UR reg share," represents the official proportion of votes for UR among registered voters. The second number, "Fraud," indicates the
total estimated fraudulent votes as a proportion of the registered votes.
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A Asymptotics of d̂(ε̂) for kernel estimators

Let ε̂(x, z) = F̂−1
Z|X=xn

(
F̂Z|X=x(z)

)
be the estimator of the unobserved term, using the

standard kernel estimators of the cumulative distribution function and its inverse. We will
abuse the notation by dropping the dependence of ε on x and z in the below. Under the set
of standard assumptions, this estimator converges uniformly with rate

√
NhL (see Theorem

2 in Matzkin (2003)). Denote the asymptotic variance by Vε and the normalized bandwidth
by h.

Let d̂obs(e) = ̂E (Z − Y obs|X = x, ε = e) and d̂f (e) = ̂E (Z − Y f |X = x, ε = e) be the
Nadaraya-Watson kernel regression estimators. Under a set of standard assumptions, they
converge uniformly with rates

√
Nc and

√
Nf , correspondingly (see, for example, Devroye

(1978)). Denote the corresponding normalized bandwidths by hc and hf .

Theorem 1. Suppose the following set of assumptions holds

1. Xi are iid, {Y f
i , Zi} are iid conditional on X, and Y obs

i are iid in region with Xi = x;

2. Density fX,Y,Z has compact support in RL+2 and is continuously differentiable up to the
order s′ > 0;

3. The kernel function K is differentiable of order s′′, the derivatives of K of order s′′ are
Lipschitz, K vanishes outside a compact set, integrates to 1, and is of order s′′′, where
s′′ + s′′′ ≤ s′ and s′′, s′′′ ≥ 2;

4. As N → ∞, Nc → ∞, Nf → ∞, h → 0, hc → 0, hf → 0, Nc

NhL → 0, Nc

Nf
→ 0,

lnN
NhL+1 → 0, lnNc

Nch3
c
→ 0, lnNf

Nfh
3
f

→ 0,
√
NhL → ∞,

√
Nch2

c → ∞;
√
Nfh2

f → ∞,
√
Nh0.5L+s′′′ → 0, and

√
NhL

(√
lnN

NhL+1 + hs′′′
)2

→ 0;

5. The values, xn and x, are different at least at one coordinate;

then d̂(ε̂)
p→ d(ε) and

√
Nc(d̂(ε̂) − d(ε))

d→ N (0, Vd(ε)), where Vd(ε) > 0 is the asymptotic
variance.

Proof. Denote d̂(e) − d(e) = hd(e) and ε̂ − ε = hε such that the differences are sufficiently
small. Then we have that there exist constants 0 < a1, a2 < ∞ such that |hd(e)| ≤ a1||Hd||
and |hε| ≤ a2||Hε||, where || · || denotes the supnorm. Because of uniform convergence of the
estimators, there exist constants 0 < a3, a4 < ∞ such that |d̂obs(ε) − dobs(ε)| ≤ a3||Hdobs||
and |d̂f (ε) − df (ε)| ≤ a4||Hdf ||. Also denote by ||H|| = max (||Hd||, ||Hε||, ||Hdobs||, ||Hdf ||).
Hence, |hd(e)| ≤ a1||H||, |hε| ≤ a2||H||, |d̂obs(ε) − dobs(ε)| ≤ a3||H|| and |d̂f (ε) − df (ε)| ≤
a4||H||. .

Next, note the following:

d̂(ε̂)− d(ε) = d̂(ε̂)− d̂(ε) + d̂(ε)− d(ε)

=
∂d(ε)

∂ε
(ε̂− ε) +

∂hd(ε)

∂ε
(ε̂− ε) + d̂(ε)− d(ε) +O(||H||2)

=
∂d(ε)

∂ε
(ε̂− ε) + d̂obs(ε)− dobs(ε)− d̂f (ε) + df (ε) +Res,
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where Res = O(||H||2).
Thus, there exist constants 0 < a5, a6 < ∞ such that |d̂(ε̂) − d(ε)| ≤ a5||H|| + a6||H||2.

Given that ||H|| p→ 0, we have |d̂(ε̂)− d(ε)| p→ 0.
Next, we have

√
NhL

∂d(ε)

∂ε
(ε̂− ε)

d→ N

(
0,

(
∂d(ε)

∂ε

)2

× Vε

)
.

Also, Res = o(hε), so
√
Nc(

∂d(ε)
∂ε

hε + o(hε))
p→ 0, implying that the resulting asymptotics is

determined by the slowest term. By the assumption on convergence rates, the slowest term
is d̂obs(ε)− dobs(ε).

B Simulations
In this section, we provide a small simulation experiment of the two-step estimation

procedure. We generate regional characteristic X ∼ U [0, 1] for nr + 1 regions, where nr of
them have only one polling station and one large region has nm polling stations. We also
generate nr + nm unobservable random terms ε ∼ U [0, 1] that are independent of X. We
obtain the electoral variables Y and Z as follows:

Y =
1

2
X2 +

3

8
ε2

Z =
1

2
X2 +

1

2
ε.

We assume that ballot stuffing depends only on ε as d(ε) = 0.3 + 2(ε− 0.5)3, implying that
the observable Y f = Y +d(ε). For half of the large region polling stations (nm/2) we observe
the truthful Y , so they represent the cleaner polling stations.

We run 1,000 simulations for different combinations of values for nr and nm, where nr

takes values of 500 and 1,000 and nm takes values of 250 and 500. For each simulation, we
use the value of X = 0.5 for normalization and estimate ε̂ for each polling station. Next, we
use the sample from the large region and estimate d(·) at 100 fixed points, which we drew
from a uniform distribution with the support [0, 1]. We use kernel estimation for both steps.
For each simulation, we calculated the absolute value of bias, variance, and mean squared
error. We report averages of these values in Table B1.

Figure B1 also demonstrates the average over 1,000 simulations of the estimated function
d(·) (the solid line) together with its true value (the dashed line) and the 2.5% and 97.5%
percentiles (the dot-dashed lines) for nr = 1, 000 and nm = 500.

C An Underlying Structural Model
This section presents a simple example of an underlying structural model related to the

calculus of voting (Downs, 1957; Riker and Ordeshook, 1968) that could have produced the

24



Table B1: Simulation Results

Specification |Bias| Variance MSE

nr = 500, nm = 250 0.0120 0.0117 0.0120
nr = 500, nm = 500 0.0114 0.0115 0.0118
nr = 1, 000, nm = 250 0.0115 0.0101 0.0104
nr = 1, 000, nm = 500 0.0110 0.0094 0.0097

Notes: Table B1 presents the simulation results for different values of nr (nr + 1 being the
number of regions) and nm (the number of polling stations in the large region). The metrics
include the absolute bias, variance, and mean squared error (MSE) for each scenario.

Figure B1: Simulation Results

Notes: Average behavior of the estimator for function d(ε) based on 1,000 simulations with nr = 1, 000
and nm = 500. True value is shown by the blue dashed line, d(·) is the blue solid line. Black dot-dash lines
present the 2.5% and 97.5% percentiles confidence interval.

data we study.
Two candidates, A (incumbent) and B (opposition), are running for office. Each voter

has preferences over candidates: Similarly to probabilistic voting in Persson and Tabellini
(2000), voter i in a polling station j in region K chooses candidate A over B if

σijK
A + µK

A > σijK
B + µK

B ,

where σijK
t is a parameter of individual “pure” preferences toward candidate t of voter i, and

µK
t is a regional effect in the popularity of candidate t and is a function of some observable

characteristics of the region X, such as average income, level of education, share of old
population, etc. Thus, µK

t = h̃t(X).
To obtain the reduced form of the model, we define parameters of difference in preferences
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between candidates σ = σijK
B −σijK

A and µK = µK
B−µK

A = h̃B(X)−h̃A(X) ≡ h(X). Therefore,
voter i in a polling station j in region K with observable characteristics X chooses candidate
A over B if

σ + h(X) < 0,

where σ is personal “pure” preference for the candidate B and h(X) is the regional effect on
preferences.

To include turnout in the model, we follow the empirical evidence that suggests voting
costs affect electoral participation (Fujiwara et al., 2016; Leon, 2017). Similar to Kawai et al.
(2021), a voter chooses to participate in elections if the difference in her preferences from
other candidates is higher than the costs of participation:

|σ + h(X)| ≥ c.

Participation costs c are random and the same for all voters in the same polling station, but
might be different across different polling stations. Costs might represent the length of the
line to vote, the weather, the difficulty of obtaining a voter card, etc. Such representation
of participation implies that if a voter’s preferences are close to indifference between the
candidates, she does not attend elections. And, by contrast, if a person has very strong
preferences toward one candidate or another, she comes to the polling station even when
costs are high.14

In addition, we assume individual “pure” preferences σ are independent identically dis-
tributed variables with density g(·) and cumulative distribution G(·). Costs of voting c are
independent identically distributed variables with density fc.

Next, we introduce “swing voters”, σA and σB, in every polling station, who are indifferent
between participating and not participating in elections:

σA = −h(X)− c and σB = σA + 2c.

Notice people with “pure” preferences σ < σA will vote for candidate A, people with σ > σB

will vote for candidate B, and everybody in between the swing voters will abstain from
elections. As a result, the number of people who vote for A in a polling station is nA =∫ σA

−∞ dG(x) = G(σA). The same number for candidate B is nB =
∫ +∞
σB

dG(x) = 1 − G(σB).
Thus, turnout in the polling station is τ = 1 − G(σB) + G(σA), and A’s share of votes is
πA = nA

nA+nB
= G(σA)

1−G(σB)+G(σA)
.

Hence, this model produces our variables of interest Y and Z as follows:

Y = G(σA) and Z = G(σB)

or in the following form:

G (−h(X)− c) = m(X, ε)− t(X, ε)

G (−h(X) + c) = m(X, ε).

14We recognize this model does not account for “marginal voter” thinking, i.e., when voters believe their
vote does not matter and abstain from elections. The data show people vote, and we do not attempt to
contribute to the divisive question of why.
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Note that when we use normalization m(Xn, ε) = ε, it has the following connection with
the cost of voting in this model:

G(−h(Xn) + c) = ε.

Thus, ε is a positive transformation of the cost of voting c that could be further identified if
necessary.

Note that this model is only an example of an underlying data generating process.

D Data Appendix

D.1 Creating the Dataset

To construct our final dataset used in Section 4, we draw on three sources: the Russian
Census (2010), the Russian Presidential Election (March 2012), and the Russian Parliamen-
tary Election (December 2011). The primary task with these three datasets is to obtain
demographic controls for the 2011 parliamentary elections. The main challenge is that the
2011 parliamentary election data does not include precise polling station locations. Instead,
it provides information on the Region, Territorial Electoral Commission (TIK), and polling
station number (UIK). In larger regions, an additional layer of geographic information is
available. Because the difference between the parliamentary and presidential elections is
only 3 months, the majority of the polling stations are expected to stay the same.

We begin by matching polling stations between elections. This enables us to align the
address information of polling stations available from the 2012 presidential election data.
The process of matching 2011 parliamentary polling stations to 2012 presidential polling
stations is based on the Region and Territorial Electoral Commission (TIK). Out of 86
unique Region values, 83 were successfully matched across the two elections. The remaining
three correspond to foreign locations outside of Russia. Additionally, by grouping the two
datasets by Region, all unique TIK values could be matched across the elections. From
there, we matched UIK numbers within TIKs, resulting in a dataset of 100,321 observations.
However, 10,396 observations lack a corresponding polling station in either the presidential
or parliamentary election datasets. This is likely due to new polling stations being added
during the presidential election or polling stations from the parliamentary election being
discontinued in the presidential election.

We also assessed fluctuations in voter registration across the two elections for the matched
polling stations. The thresholds range from ± 10% to ± 100%, reflecting the extent to which
registration could fluctuate between the two elections. Table D1 provides the corresponding
sample sizes.

For our estimation sample, we restrict the data to a ± 20% threshold. After matching
polling stations, we use the location of each UIK to align with the 2010 census data at
the Selsoviet level (ADR3). We exclude 762 polling stations where the census matching is
deemed unreliable, such as cases where the population count is smaller than the number of
registered voters. The final sample includes 71,064 polling stations, representing 79% of the
total sample.
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Threshold Sample Size

±10% 59,366
±20% 71,826
±50% 81,062
±80% 84,841
±100% 86,377
No Threshold 89,925

Table D1: Summary of Sample Sizes at Different Thresholds

D.2 Visual Representation of Matching

The census data provides two levels of administrative district classifications: ADR2 and
ADR3. ADR3 represents a more localized administrative region nested within ADR2. While
Figure D1 shows the ADR2 regions on a map of Russia, we use the more granular ADR3
data, which is more challenging to visualize. To illustrate the matching process, Figure D2
presents an example of the ADR2 districts around central Moscow, with polling stations from
the presidential dataset overlaid. Figure D3 shows the matched polling station locations in
the 2011 parliamentary election.

Figure D1: Census Data Russia Map (ADR2)
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Figure D2: Moscow Polling Stations
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Figure D3: Russia Polling Stations
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D.3 Census Information

The Russian census data contains information pertaining to demographic, economic,
housing, migration, transportation and social factors. Note that not all information is avail-
able for every region (ADR2 and ADR3). Therefore, when selecting variables, we restrict
our analysis to data that is widely available across the regions. As a result, we focus on the
following variables:

• Total Population

• Percentage of Rural Population

• Percentage of Female Population

• Percentage of Population Change Compared to the Last Census

• Average Salary

• Average Government Salary

• Percentage of Families Receiving Government Subsidies

• Number of Government Employees

• Percentage of Disabled People

• Percentage of School-Aged Children

• Number of Schools

• Number of Kindergartens

• Average Housing in Square Metres

Note that in section F.2, we present results using all available information from the
CENSUS, while accounting for missing data in certain regions.

E Principal Component Analysis
Principal Component Analysis (PCA) is a statistical technique used to summarise a

dataset containing numerous correlated variables into a smaller set of uncorrelated compo-
nents, each being a linear combination of the original variables. There are as many principal
components as there are variables.

In situations where the original variables are highly correlated, PCA enables a significant
reduction in dimensionality by capturing most of the variation in a few principal compo-
nents, thus simplifying further analysis. The first principal component is responsible for the
largest proportion of variance in the dataset, and each subsequent component explains a
progressively smaller portion of the variance.

The PCA process assigns an eigenvalue to each component, which indicates the amount
of variance that component captures from the original data. The proportion of variance
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explained by any principal component is calculated by dividing its eigenvalue by the sum of
all eigenvalues.

Additionally, the “loading” for a variable on a principal component is determined by
multiplying the eigenvector associated with that component by the square root of its eigen-
value. This loading measures the strength of the relationship between the variable and the
component.

Section D.3 lists the variables included in PCA analysis. Below, we provide a step-by-
step explanation of how we conducted the PCA analysis and why we chose to focus on three
factors.

(1) Decide whether it is appropriate to perform exploratory factor analysis. This is done
by examining the ‘factorability’ of the correlation matrix.

Barlett test of sphericity: The null hypothesis for this test is an identity matrix, so re-
jecting the null means you infer non-zero correlations among the variables.

P-value of the test: 0.000. This result suggests the matrix is factorable.
Kaiser-Meyer-Olkin Measure of Sampling Adequacy: The Kaiser-Meyer-Olkin Measure

(KMO) is another index for assessing the appropriateness of factor analysis. KMO ranges
from 0 to 1, with higher values providing greater justification for factor analysis of the
correlation matrix. As described in the Stata manual.

KMO = 0.903, which provides additional evidence for the appropriateness of conducting
factor analysis on our variables.

(2) How many factors to retain?
We use parallel analysis to determine how many factors to retain. Parallel analysis

compares eigenvalues from the PCA with randomly generated eigenvalues. As shown in Table
E1, the eigenvalues associated with first 3 principal components are larger than randomly
generated ones. This suggests retention of three factors.

Figure E1 shows an overlay of the randomly generated eigenvalues and shows a ‘break-
point’ at three factors. This helps to visualize where the randomly generated eigenvalues
exceed the eigenvalues computed from the data.

32



0
2

4
6

Ei
ge

nv
al

ue
s

0 5 10 15
Component

 PCA Parallel Analysis

Parallel Analysis

Figure E1: Parallel Analysis.

Table E1: PCA Eigenvalues and Randomly Generated Eigenvalues.

Principal Comp. Analysis Parallel Analysis
Eigenvalues Random Eigenvalues Difference

1 6.46429 1.023207 5.441083
2 1.821781 1.018152 0.8036298
3 1.292837 1.014183 0.2786534

4 1.00793 1.010738 -0.0028085
5 0.995452 1.007542 -0.0120899
6 0.8300372 1.004558 -0.1745212
7 0.6277536 1.001498 -0.3737449
8 0.3916343 0.9985071 -0.6068728
9 0.2340445 0.9954785 -0.7614341
10 0.1825673 0.9923968 -0.8098295
11 0.0769674 0.9892223 -0.912255
12 0.0380089 0.9856929 -0.947684
13 0.0272562 0.9818299 -0.9545738
14 0.0094408 0.976993 -0.9675523
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(3) Extract the factors and varimax rotation (a type of orthogonal rotation)
Interpreting a factor analytical solution can be challenging, largely due to the inherent

indeterminacy in factor analysis. This indeterminacy is often addressed through orthogonal
transformations of the common factors and their associated factor loadings. This approach
preserves the property that common factors remain uncorrelated and does not affect the
reconstructed (fitted) correlation matrix. Table E2 shows that Factor 1 explains 65.14% of
the total observed variance in our factor model. Table E3 presents the final loadings used
to predict the factor loadings for each factor.

Table E2: Factor Analysis/Correlation: Iterated Principal Factor.

Factor Variance Difference Proportion Cumulative
Factor1 5.55572 3.26436 0.6514 0.6514
Factor2 2.29136 1.60986 0.2687 0.9201
Factor3 0.68150 0.0799 1.0000
N = 71, 064; LR test: independent vs. saturated: P-value=0.0000

Table E3: Full Factor Loadings Using Principal Factor Analysis and Varimax Rotation.

Variable (Selsoviet level) Factor1 Factor2 Factor3 Uniqueness
Total Population 0.9711 0.2040 -0.0982 0.0056
% of Rural -0.3726 -0.6112 0.1589 0.4623
% of Female 0.2448 0.2071 -0.3482 0.7760
% Pop Change 0.2066 0.2779 0.6144 0.5026
Average Salary 0.1199 0.8948 -0.0224 0.1844
Average Government Salary 0.1499 0.8439 0.0067 0.2653
% of Families Receiving Gov. Subsidies -0.0038 0.0010 0.0094 0.9999
Averag Tax Income 0.8323 0.1816 -0.0431 0.2725
No. of Government Employees 0.9311 0.2047 -0.0833 0.0841
% of Disabled People -0.1550 -0.1976 -0.1479 0.9151
% of School Kids -0.0355 -0.1022 0.3010 0.8977
No. of Schools 0.9611 0.2001 -0.0803 0.0299
No. of Kindergartens 0.9508 0.2021 -0.1020 0.0448
Average Housing in Square Metres 0.9601 0.1948 -0.0956 0.0312
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F Additional Results and Robustness Checks

F.1 Robustness Check: Normalization

To conduct a robustness check, we change the normalization used to estimate the polling
station random term in Eq. (2). Instead of the midpoint of the support of X we use the
characteristics X in uik 1136 in Altai Krai.

Figure F1: Estimates of ε using the midpoint vs Altai Krai normalization

Notes: Figure F1 shows the scatterplot of the estimators of ε in Eq.(2) based on the midpoint and Altai
Krai normalizations.

Figure F1 shows the scatterplot of the estimators of ε in Eq.(2) based on the midpoint and
Altai Krai normalizations. When the estimates from the two normalizations are identical,
they should align along the 45-degree diagonal line. The scatterplot shows that although
the Altai normalization produces slightly different estimates, they remain very close to one
another.

Figure F2 shows the estimator of d(·) under the robustness normalization. While there
are some differences with the original estimator, the overall shape is the same. Hence, we
conclude that the choice of the normalization does not affect the results.

F.2 Robustness Check: Sample and PCA analysis

In the main results, we estimated the model using restricted data. In this subsection,
we perform two robustness checks: (1) using the full polling station dataset without exclud-
ing stations with low matching rates (see subsection D), and (2) incorporating additional
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Figure F2: Estimator of d(·) using the Altai Krai normalization

Notes: The graph presents the estimated function d(·) across ε, estimated using the Altai Krai normalization
and all polling stations with independent observers as the cleaner sample.

variables from the CENSUS to construct factors via PCA (see subsection E). Panel A of
Table F1 presents the estimated fraud rates for the full sample, similar to Table 1. In our
final sample, the fraud rate is slightly higher, at 13.5%, compared to 12.8% when using the
cleaner sample of polling stations with no violations. It is also 8% compared to 7.5% when
using the cleaner sample with all independent observers. The results for Moscow and the
other regions are similarly consistent, confirming the robustness of our findings.

In Panel B, we expand the set of information used in PCA to generate factors. While the
base estimation was restricted to data available for all Selsovets from the CENSUS, here we
include all available information, marking any missing data with an indicator variable. The
additional data includes variables on age distribution, occupation, and ethnic composition.
Comparing these results with Table 1, we again observe similar patterns, reinforcing the
robustness of our conclusions.
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Table F1: Sample Robustness Checks

Panel A: Full Sample

Clean Sample: No Violations Clean Sample: All Observers
All Regions Moscow Tatarstan Dagestan All Regions Moscow Tatarstan Dagestan

Estimated Turnout (%) 46.3 47.3 60.1 72.1 51.6 53.3 70.1 81.4
Estimated Fraud / Reg. Voters (%) 13.3 14.0 19.5 19.0 8.0 8.0 9.7 9.7
Estimated UR Vote / Reg. Voters (%) 15.6 14.5 43.1 64.3 20.9 20.5 53.1 73.6
Estimated UR Voter Share (%) 26.2 23.7 54.1 70.6 35.1 33.5 66.6 80.8
Official UR Vote / Reg. Voters (%) 28.9 28.6 62.7 83.3 28.6 28.6 62.7 83.3
Official UR Voter Share (%) 48.5 46.6 78.7 91.5 48.0 46.6 78.7 91.5
Official Turnout (%) 59.6 61.3 79.7 91.1 59.6 61.3 79.8 91.1
Number of Polling Stations 88,326 3,361 2,749 1,877 88,326 3,361 2,749 1,877

Panel B: New Factor Variables

Clean Sample: No Violations Clean Sample: All Observers
All Regions Moscow Tatarstan Dagestan All Regions Moscow Tatarstan Dagestan

Estimated Turnout (%) 46.5 47.7 61.0 72.0 51.2 53.0 70.4 81.4
Estimated Fraud / Reg. Voters (%) 12.7 13.3 18.7 19.3 7.9 8.0 9.3 10.0
Estimated UR Vote / Reg. Voters (%) 15.7 15.1 44.2 64.3 20.5 20.4 53.6 73.6
Estimated UR Vote Share (%) 26.6 24.7 55.5 70.4 34.6 33.4 67.2 80.6
Official UR Vote / Reg. Voters (%) 28.4 28.3 62.9 83.6 28.4 28.3 62.9 83.6
Official UR Vote Share (%) 48.0 46.5 78.9 91.5 48.0 46.5 78.9 91.5
Official Turnout (%) 59.2 61.0 79.7 91.4 59.2 61.0 79.7 91.4
Number of Polling Stations 71,064 2,952 2,631 1,661 71,064 2,952 2,631 1,661

Table Note: The table provides two robustness checks for the main results. Panel A presents fraud rate estimates using the full polling station dataset,
without excluding stations with low matching rates. Panel B incorporates additional variables from the CENSUS to generate factors via PCA. For each
panel, results are reported for the cleaner sample of polling stations: those with “no violations” (similar to Table 1, Panel C) and those with independent
observers (similar to Table 1, Panel D).Figure F3, Panels A and B presents the estimated functions d(·) for the sample used in Panel A and Panel B.
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F.3 Alternative Control Group

In this section, we assess the robustness of using Moscow polling stations without inde-
pendent observers as the control group in Eq. (3). Table F2 presents summary statistics
for polling stations with independent observers and no reported violations, showing that
Moscow polling stations exhibit similar characteristics. To further ensure the robustness of
this control group, we construct a pseudo-control group using propensity score matching
with nearest-neighbor matching based on Mahalanobis distance. This matched sample is
then used as the control group to re-estimate Eq. (3), minimizing selection bias from ob-
servable covariates (Imbens and Wooldridge, 2009). The summary statistics for the matched
group are shown in the third panel of Table F2, and Table F3 provides the estimation results,
which remain consistent with those in Table 1.

Table F2: Summary Statistics for Treatment and Control groups

Treat Gr: No Violations Control: Rest of Moscow Pseudo Control Group

Factor 1 -0.7298 -0.7249 -0.7370
Factor 2 2.2684 2.3224 2.2387
Factor 3 -0.2250 -0.2178 -0.2019

Table F3: Results using New Control Group

Results using New Control Group

All Regions Moscow Tatarstan Dagestan

Estimated Turnout (%) 47.8 49.1 63.6 75.8
Estimated Fraud Rate (%) 11.4 11.9 16.1 15.6
Estimated UR Vote / Reg. Voters (%) 17.0 16.5 46.8 68.0
Estimated UR Voter Share (%) 28.8 27.0 58.7 74.4
Official UR Vote / Reg. Voter (%) 28.4 28.3 62.9 83.6
Official UR Voter Share (%) 48.0 46.5 78.9 91.6
Official Turnout (%) 59.2 61.0 79.7 91.4
Number of Polling Stations 71,064 2,952 2,631 1,661

Table Note: This table presents estimates using a new control group to assess robustness. We use Moscow
polling stations without independent observers as the control group for Eq. (3), and construct a pseudo-
control group through propensity score matching with nearest-neighbor matching based on Mahalanobis
distance. The results are comparable to Table 1 Panel C.Figure F3, Panel C presents the estimated function
d(·) for this specification.
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Figure F3: Estimated function d(·) across ε for the robustness samples.
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Note: This figure presents the estimated function d(·) across ε for the samples used in Tables F1 and F3. The estimates are
based on the mid-point normalization. Red points represent estimates from all polling stations with independent observers (cleaner
sample), while blue points show our preferred estimates, where the cleaner sample consists of polling stations that reported no
violations. Panel A corresponds to Table F1, and Panel B corresponds to Table F3.
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Figure F4: Estimated Ballot Stuffing Across Regions
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Notes: Figure F4 shows the estimated ballot stuffing using the cleaner sample consisting of observers that reported no violations. The box represents the interquartile range
(IQR), covering the middle 50% of the data. The red line inside the box marks the median. The whiskers extend to the minimum and maximum values, excluding outliers, which
are shown as individual points beyond the whiskers. The first number at the bottom of the figure, “Off. UR reg share,” represents the official proportion for UR among registered
voters. The second number, “Fraud,” indicates the total estimated fraudulent votes out of the registered votes.
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Figure F4: Estimated Ballot Stuffing Across Regions (continued)
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0 .05 .1 .15 .2 .25 .3

Penza Oblast

Off.UR reg.share: 17%, Fraud: 12%

0 .05 .1 .15 .2 .25 .3

Perm Krai

Off.UR reg.share: 16%, Fraud: 10%

0 .05 .1 .15 .2 .25 .3

Primorsky Krai

Off.UR reg.share: 19%, Fraud: 11%

0 .05 .1 .15 .2 .25 .3

Pskov Oblast

Off.UR reg.share: 30%, Fraud: 14%

0 .05 .1 .15 .2 .25 .3

Rostov Oblast

Off.UR reg.share: 20%, Fraud: 12%

0 .05 .1 .15 .2 .25 .3

Ryazan Oblast

Off.UR reg.share: 19%, Fraud: 12%

0 .05 .1 .15 .2 .25 .3

Saint Petersburg

Off.UR reg.share: 30%, Fraud: 12%

0 .05 .1 .15 .2 .25 .3

Sakha (Yakutia)

Off.UR reg.share: 20%, Fraud: 15%

0 .05 .1 .15 .2 .25 .3

Sakhalin Oblast

Off.UR reg.share: 18%, Fraud: 12%

0 .05 .1 .15 .2 .25 .3

Samara Oblast

Off.UR reg.share: 38%, Fraud: 16%

0 .05 .1 .15 .2 .25 .3

Saratov Oblast

Off.UR reg.share: 17%, Fraud: 11%

0 .05 .1 .15 .2 .25 .3

Smolensk Oblast

Off.UR reg.share: 24%, Fraud: 15%

0 .05 .1 .15 .2 .25 .3

Stavropol Krai

Off.UR reg.share: 16%, Fraud: 11%

0 .05 .1 .15 .2 .25 .3

Sverdlovsk Oblast

Off.UR reg.share: 46%, Fraud: 17%

0 .05 .1 .15 .2 .25 .3

Tambov Oblast

Off.UR reg.share: 63%, Fraud: 18%

0 .05 .1 .15 .2 .25 .3

Tatarstan

Off.UR reg.share: 20%, Fraud: 12%

0 .05 .1 .15 .2 .25 .3

Tomsk Oblast

Off.UR reg.share: 45%, Fraud: 15%

0 .05 .1 .15 .2 .25 .3

Tula Oblast

Off.UR reg.share: 75%, Fraud: 17%

0 .05 .1 .15 .2 .25 .3

Tuva

Off.UR reg.share: 21%, Fraud: 12%

0 .05 .1 .15 .2 .25 .3

Tver Oblast

Off.UR reg.share: 46%, Fraud: 15%

0 .05 .1 .15 .2 .25 .3

Tyumen Oblast

Off.UR reg.share: 24%, Fraud: 13%

0 .05 .1 .15 .2 .25 .3

Udmurt

Off.UR reg.share: 20%, Fraud: 11%

0 .05 .1 .15 .2 .25 .3

Ulyanovsk Oblast

Off.UR reg.share: 15%, Fraud: 11%

0 .05 .1 .15 .2 .25 .3

Vladimir Oblast

Off.UR reg.share: 18%, Fraud: 11%

0 .05 .1 .15 .2 .25 .3

Volgograd Oblast

Off.UR reg.share: 19%, Fraud: 10%

0 .05 .1 .15 .2 .25 .3

Vologda Oblast

Off.UR reg.share: 31%, Fraud: 12%

0 .05 .1 .15 .2 .25 .3

Voronezh Oblast

Off.UR reg.share: 58%, Fraud: 15%

0 .05 .1 .15 .2 .25 .3

Yamalo-Nenets Autonomous Okrug

Off.UR reg.share: 16%, Fraud: 9%

0 .05 .1 .15 .2 .25 .3

Yaroslavl Oblast

Off.UR reg.share: 23%, Fraud: 12%

0 .05 .1 .15 .2 .25 .3

Zabaykalsky Krai

Notes: Figure F4 shows the estimated ballot stuffing using the cleaner sample consisting of observers that reported no violations. The box represents the interquartile range
(IQR), covering the middle 50% of the data. The red line inside the box marks the median. The whiskers extend to the minimum and maximum values, excluding outliers, which
are shown as individual points beyond the whiskers. The first number at the bottom of the figure, “Off. UR reg share,” represents the official proportion for UR among registered
voters. The second number, “Fraud,” indicates the total estimated fraudulent votes out of the registered votes.

41


	Introduction
	Model and identification
	Electoral model
	Identification in nonadditive models
	Identification of unobservable components

	Estimation
	Empirical Application
	Dataset
	Estimation and Results

	Conclusion
	Online Appendices - Not For Publication
	Asymptotics of d"0362d() for kernel estimators 
	Simulations
	An Underlying Structural Model 
	Data Appendix
	Creating the Dataset
	Visual Representation of Matching
	Census Information

	Principal Component Analysis
	Additional Results and Robustness Checks
	Robustness Check: Normalization
	Robustness Check: Sample and PCA analysis 
	Alternative Control Group


